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BOUNDS FOR MULTIPLICATIVE COSETS OVER FIELDS OF 
PRIME ORDER 

COREY POWELL 

ABSTRACT. Let m be a positive integer and suppose that p is an odd prime 
with p _ 1 mod m. Suppose that a E (Z/pZ)* and consider the polynomial 
x a. If this polynomial has any roots in (Z/p2)*, where the coset repre- 
sentatives for Z/pZ are taken to be all integers u with Jul < p/2, then these 
roots will form a coset of the multiplicative subgroup ,lm of (Z/pZ)* consist- 
ing of the mth roots of unity mod p. Let C be a coset of ,Um in (Z/pZ) *, 
and define ICI = maxuEc jul. In the paper "Numbers Having m Small mth 
Roots mod p" (Mathematics of Computation, Vol. 61, No. 203 (1993),pp. 
393-413), Robinson gives upper bounds for Mi(m,p) = mincE(Z/pz)*/m ICI 
of the form Ml (m, p) < Kmpl -l /X(m) , where X is the Euler phi-function. This 
paper gives lower bounds that are of the same form, and seeks to sharpen the 
constants in the upper bounds of Robinson. The upper bounds of Robinson 
are proven to be optimal when m is a power of 2 or when m= 6. 

1. INTRODUCTION 

Let Z, Q, R1, and C denote the integers, rationals, real numbers, and complex 
numbers, respectively. Suppose that m > 1 is a positive integer and that p is an 
odd prime with p 1 mod m. Take the coset representatives for Z/pZ to be all 
integers u with Lul < p/2. The multiplicative group (Z/pZ)* has a subgroup ,Um of 
mth roots of unity mod p, which is generated by a single element t. 

If a E (Z/pZ)* has any mth roots mod p, then these roots will form a coset 
of ,Um in (Z/pZ)*. Let C be a coset of am. Define ICI = maxIlcc Jul and let 
lClCI = Z/.c u2 These two measures of the "size" of C are related by the 
inequality IICfl/\/ < ICI < IfCf. Define Mi(m,p) = mincG(z/pZ,)*/,m ICI and let 
M2 (m, p) = mincG(z/p)* /mm IICII - 

Let Km be the infimum of all K's such that Ml(m,p) < Kpl-l/k(m) for all 
p 1 mod m, where 0 is the Euler phi-function. In [6], Robinson proves that such 
a Km exists, and gives the following upper bounds for Km: 

1. Km < 2r, where T is the number of distinct odd primes dividing m. 
2. Km < 3 if m is divisible by only one prime greater than 3. 
3. Km < 2/,/23 if m is divisible by no prime greater than 3. 

Robinson conjectures that there are lower bounds for M1 (m, p) of the form M1 (m, p) 
> Kpl-11/(m), but does not prove this result, and does not establish whether or 
not the upper bounds he gives for Km can be improved in general. In [3], Konyagin 
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and Shparlinksi prove the lower bound Ml (m, p) > (p - 1)/2 - p3/2/m, which is a 
good bound if p is small compared to m. Section 2 establishes that 

M1 (m, P) > ( /( II ql/q ) Ip -lXm 
q prime 

qlm 

if p is sufficiently large compared to m. It follows from the bound above that 

M1 (n, p) > (ml/(m1)1 ()pll/k(m) 

since f (x) = xl/(x-1) is a decreasing function of x for x > 1. Section 2 proves that: 

1. Km <?H|qoddprime q2q-2 and 
qlm 

2. Km < 2/V',3 if m is divisible by no prime greater than 3. 
These upper bounds are at least as sharp as Robinson's for all m and p. The 
first upper bound gives the estimates Km < Cm' for any e > 0, where C, = 

q odd prime ql/(2q-2)-E. Hendrik Lenstra has suggested that Km < Clnm for some 
1/(2q- 2)> e 

constant C, but this bound seems difficult to prove. 
Section 9 discusses the possibility of improving these upper and lower bounds. 

2. LOWER BOUNDS FOR Ml(m,p) AND M2(m,p) 

Let (m be a primitive mth root of unity. It is well known from Galois theory 
that Q((m) is a Galois extension of Q of degree 0(m), and that the elements oj 
of the Galois group Gal(Q((m)/Q) of Q((m) over Q are uniquely defined by the 
condition %j((m) = (m) where gcd(j,m) = 1. Let NQ((m)/Q( ) and TrQ((m)/Q( ) 
denote the norm and trace maps from Q((m) to Q. It is well known from algebraic 
number theory that the irreducible polynomial of (m over Q is the mth cyclotomic 
polynomial Dm(X) = fJi,(z/mz)- (X - QJ and that the ring of integers of Q((m) 
is Z[(m]. The ideal generated by p in Z[(m] factors as PZ[(m] = fJi(Z/mZ)* Pi) 
where 

Pi = PZ Km] + ((m - t) Z [(m]l 
The following theorem will also use the facts that NQ((m)/Q(Pi) = p and that 
Pi n7z=ppz2. 

Let 1 be the largest prime dividing m such that Ml (m, p) < p/l, if such a prime 
exists, and let 1 = 1 otherwise. If p > (2' maxqlm,q prime q)?)(m) then M(m)p) < 
2Tpl-1/0(m) < p/ maxqlm,q prime q by the results of Robinson, and so 1 will be the 
largest prime dividing m. 

Theorem 1. If 1 is as above, then 

Ml * p) > (V/--)( 11 qTl)/M)pl-l/m 
q prime,q<1 

qlm 

The proof of the theorem will follow directly from the following three lemmas 
together with the fact that JNQ(m)/Qce = NQ((m)/Q(ceZ[(m]) for any ce E Z[(m] 
Let C be a coset of (Z/pZ)*, and let bo,... , bmin- be the elements of C with 
bj boti mod p. Define f3d =Em-1 bjimd, and let y3 denote the complex conjugate 
of yI. 

Lemma 1.1. If f1 is as above, and C is such that ICI = Ml(m,p), then q q- 

NQ((m)/Q(/1) for all q < 1. 
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Proof. It suffices to show that 131 ((m/q - 1)Z[(m], since 

NQ _ Xq((mm-1)- -1)) = q q-1 

It is clear that (i_ ($imod(m/q) mod ((Mm/q -1)2[(Q], and hence that 

Mq1 q-1 

i- SE ((m bj+km/q) mod ((mm/q- 
j=0 k=0 

It follows from the definition of bi that 
q-1 q-1 

bj+km/q = bj 5 tkm/q mod p 
k=0 k=0 

1-tm = bj l t/ mod p 
1 - tm/q 

Omodp 

for 0 < j < m-1. It now follows that qk-1 bj+km/q = 0 for 0 < j < m- 1 because 

q-1 q-1 

5 bj+km/q ?< I bj+km/q I < pq/l < p. 
k=0 k=0 

This proves the lemma. 

Lemma 1.2. If f1 is as above, then 01 7& 0, and 

p2(0(m)-1) I Nq(m((Bp 

Proof. It follows from the definition of Pj that (m-= ti mod Pj, where gcd(j, m)=1, 
and hence i31 _ bo Em=1 tk(j+l) mod Pj. This sum is a geometric series, and so 

1 =-bo(1 - tm('+l))(1 - ) _ 0 mod Pj provided that j 78 m - 1. It follows 
that p?(m)-'l NQ((m)/Q(/13). If j = m - 1, then B1 -bom E 0 mod Pj, which 
implies that iB1 X Pm.- and hence that B1 7& 0. The lemma now follows since 

NQ((m)/3(,B1) = NQ((m)/QQ(,3l) 
It is a direct consequence of Lemma 1.1 and Lemma 1.2 that 

[N(Q(4m/(Q (i3il)l ? ( FI q20(m)/p-l)p2(0(m)-1) 

q prime,q<1 
qlm 

if ICI- M(m,p). The theorem will now follow from taking the 20(m)th root of 

this inequality and combining it with the following inequality. 

Lemma 1.3. If 13Z is as above, then 

ICI > ( V/ /M~)IM)N,(m,(,,B I 1/ (2?)(m)). 

Proof. It follows from the arithmetic-geometric mean inequality that 

Q(( )Q (B1p1 /2 > (m)/2 ) (N,@< /@(B,l))lXm 

The lemma follows by combining this inequality with the following lemma and the 

inequality IC12 > IICI12/m and then taking the square root of both sides. 
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Lemma 1.4. If 01 is as above, then 

mHlCH02 ?> TrQ(wm)/QQ1/1), 
where equality holds if fd = 0 for all d with gcd(d, m) 4 1. 

Proof. The lemma is a consequence of the following computation. 

rQ((M)/Q(/l3l/3) = S (Ebrk) (E bk mk) 

jG(Z/mrZ)* k=0 k=0 

m-1 m-1 

< 5 (E bkmj)( bkjm) 

jmodm k=0 k=0 

m-1 m-1 

E: EE bkbl(mk-I)j 
jmodm k=O 1=0 

- m|C|2 + E bkb1 E (ml)j 
0<k,1<m-l jmodm 

k#&1 

- mlC12. 

Combining the direct consequence of Lemma 1.1 and Lemma 1.2 with the arith- 
metic-geometric mean inequality and Lemma 1.4 gives the following lower bound 
for M2(m,p). 

Theorem 2. If M2 (m, p) is as previously defined, then 

M2(M, P) >- ( VOq(l) pl-l/f(q 

q prime,<I 
qlm 

If p is sufficiently large compared to m, then 

M2(M, P) >- (Ml ( -)ml-/)m 

An upper bound for this measure will be given in Section 2. 

2. UPPER BOUNDS FOR Ml(m, p) AND M2(m, p) 

The following upper bounds are obtained by using Minkowski's geometry 
of numbers. The first upper bound below also gives the estimate M1(m,p) < 
CEmEpl-1/?'(m) for any c > 0, where C, is as defined in Section 1. 

Theorem 3. If m and p are as above, then 

Ml(m,p) < min(pl- l/mr ( ]7 ql/(2q-2))pl-l/4(m)). 

q odd prime 
qlm 

If 3 is the only odd prime dividing m, then 

Ml(m,p) < min(pl-l/M (2/,,F)pl-l/0(m)). 

If A is a lattice of full rank in ]R and B = {vj}=Li is an ordered Z-basis for 
A, then let d(A) = I det(A)I, where the ith column of A is vi. This determinant 
is independent of the choice of ordered basis for A. Note that d(A) = ,det(M), 
where Mij = (vi, vj) and ( , ) is the standard Euclidean inner product. The 
theorem above is a consequence of the following theorem (see [5], p. 120). 
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Theorem 4. Let A be a lattice (of full rank) in ]Rn and let K be a bounded 0- 
symmetric convex body of volume vol(K) > 2 nd(A). Then K contains a point x 78 0 
of A. 

Let TJ(X) be the m - 0(m)th degree polynomial (Xm - 1)/1rn(X) and define 
m-1 

V = {(bo, ... ,br_l) E I S bjXj = 'Ir(X)e(X),e(X) E IR[X]}. 
j=O 

The subspace V is 0(m)-dimensional since V is isomorphic to the subspace of IR[X] 
consisting of polynomials r such that Tm(X) I r and deg(r) < m. This subspace 
has a basis y3 = {4'r(X), X1rn(X),... X?'(m)>-14m(X)}. The vector space V 
contains the lattice 

m-1 
L = {(bo... bm-1) c 2m 5 bjXj = 'Im(X)e(X), ((X) G 2[X]}. 

j=O 

Define also the lattice 

C = {(bo, ... , bm-1) E Zm bj =boti mod p, 0j < m-1} 

in Rm, and let 

S,r = { (bo,v** bm- 1) E Rtml 0< m<amx 1 bj I < r}. 

If (bo0... ,bmrn1) E C and bo E O mod p, then there is a coset C such that C = 

{bi mod pl 0 < i < m - 1} and so 

Ml(m,p): <CI < jmax lbjl. 
O?j?m-l 

If r can be chosen so that r < p, then (bo ... , bq$(mrl) E Sr n (C n L) will have 
bo 0 O mod p. The following lemma proves the first part of Theorem 3. 

Lemma 4.1. If m and p are as above, then Ml (m, p) < pll/m. 

Proof. Let ei be the ith standard basis element in IRm. The set B= {(1, t, ... , tm-1), 
peij 2 < i < m} forms a Z-basis for C, and hence d(C) = pm-1. It is now clear from 
Theorem 4 that Sr will contain a point of C if (2r)m > 2mpm-1, or if r > pl-1/m. 

The lemma now follows from the earlier remarks. 

Now, suppose that 
pl-l/m > ( 17 ql/(2q-2))pl-l/4)(m) 

q odd prime 
qlm 

To apply Theorem 4, define d(L) = d(I(L)), where I is an isometry from V to 
RO.(m)* Note that this definition is independent of the choice of I and that d(L) = 

det(M)I, where Mij = (vi,vj) and B = {vi} 1 is a basis for L as a 2-module. 
If the 0(m)-dimensional volume vol(Sr n V) > 20(m)d(C n L), then Theorem 4 
would imply that there is a non-zero point of C n L in Sr n V. It would then be a 
consequence of these remarks together with the following theorem that there is a 
non-zero point of C n L in Sr n V if 

1. r > (d(C n L))l/?(m) o 
2. r > (d(C n L))l/?'(m)/Vf for m even, and 
3. r > ((2/v3)d(C n L)/d(L))l/0(m) if 3 is the only odd prime dividing m. 
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If r can be chosen such that r < p, then it would follow that M1 (m, p) < r. The 
following two theorems will prove Theorem 3. Note that M1 (m, p) = M1 (2m, p) if 
m is odd, since the roots of X2m - u mod p are of the form ?x, where x is a root 
of Xr - z and z2 u mod p. 

Theorem 5. The following are lower bounds for vol(Sr n v): 

1. vOl(Sr n V) > (2r)O(m), 
2. vol(Sr n v) > (2Vfr)O(m) if m is even, 
3. vol(Sr n v) = (v3r)O(m)d(L) if m = 2e3f, with e, f > 0. 

Proof. A result of Vaaler (see [8]) shows that vol(Sl/2 n V) > 1. A change of 
variables then establishes the first lower bound. To prove the second lower bound, 
define 

m-1 
W = {(bo. bm-l)J S bjXj = (Xm/2 _ 1)((X), ((X) E I[X]}. 

j=O 

The fact that m is even implies that X1/2 - 1 4'rn(X), and so V c W. The set 
Bw = {Wijm/2-1 is an ordered orthogonal basis for W, where wi has -1 in the 
ith coordinate, 1 in the (i + m/2)th coordinate, and 0 in all other coordinates. It 
follows that w E Sr n W if and only if Jaii < r for 0 < i < m/2 - 1, where ai is 
the ith coordinate of w with respect to the basis Bw. Map Sr n W isometrically to 
the box Sr2 in IRm/2 by taking wi to x/2ei+i. Applying the result of Vaaler and a 
change of variables then shows that 

vol(Sr n V) = vol((Sr n W) n V) 

= vol(Sr ) n v) 

(2 Vr)0(m)vol(Sl/2n V') 

> (2v/2r)O(m) 

where V' is the image of V in Rm/2. This establishes the second lower bound. 
If m = 2e3f with e, f > 0, then 

X - 1- (xm/2 _ 1)(Xm/6 + 1)(Xm/3 _ Xm/6 + 1), 

with (Dm(X) = Xm/3 -Xm/6 + 1, and hence Tm(X) = (Xm/2 _ 1)(Xm/6 + 1). 

The set B = {Wi + Wi+m/6}%Im/3 1 is an ordered basis for V, and so B' = 

{ (i + ei+m/6)}?iim/3 forms an ordered basis for V'. If ai denotes the ith coor- 
dinate of v' E V' with respect to the basis B', then the ith coordinate of v' with 
respect to the standard basis is 

1. \/2ai if 1 < i < m/6, 
2. x/2(ai + ai-m/6) if m/6 < i < m/3, and 
3. V2ai-m/6 if m/3 < i < m/2. 

Hence v' E Sl2 n V' if and only if ai 2? for 1 < i < m/3 and Jai + ai+m/61 < 

2Vg for 1 < i < m/6. The computation at the end of the proof of the second lower 
bound proved that 

(1) vol(Sr n V) = (2V2r)0(m)vol(Sl/2 n VI). 
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Map V' to R1m/3 by taking x/2(ei + ei+m/6) to ei in Rm/3. The volume of the image 
of S1/2 n v' in Rm/3 can be found by evaluating the multiple integral 

|b 1 2 fmin( 2X' -x1) min( 2X n6' ) 
. 

I I dxm/3. dxl 
21 1 X m1 ( 1-1 -1 ) 1max( 1-Xm/6) 2 /- T2i 

' - 
2v2 '~ 2 v/2 2 v/2 2 V2 

which has the same value as 

1/ (2XV) min(1/(2V2),1/(2V2)-X1) m/6 

f z ~~~~~~dx2dxl 
-1/ (2X) Jmax(- 1/(2 2),-ll (2 2) - x ) 

A routine computation shows that the value of this double integral is 3/8. It follows 
that VOl(Sl/2 n v') = (3/8)m/6d(L) since B is a 2-basis for L which maps isometri- 
cally to B'. Substituting this value for S1/2 n V' into (1) proves the third equation, 
which finishes the proof of the theorem. 

Theorem 6. If C and L are as above, then 

d(C n L) = ( 17 q?'(m)/(2 -2))p(k(m)-l 
q prime 

qlm 

The theorem will be proven by a sequence of lemmas that reduce the theorem to 
problems in algebraic number theory. The following lemma reduces finding d(C n L) 
to finding d(L). 

Lemma 6.1. If C and L are as above, then d(C n L) = pk(m)-ld(L). 

Proof. It suffices to show that #(L/(C n L)) = p/(m)- , since 

d(C n L)/d(L) = #(L/(C n L)). 

There is a homomorphism Q from L to Z[(m] defined by Q(bo,... , bm1) = 

_=1 bjim with Q(L) = Tm((m)Z[(m]. If Q(10, ... ,I l-1) = 0, then 

m-1 
(PM(XA1M(X) I E: Ijxi, 

j=O 

and so (lo,... ,lrm-1) = 0 since 1Drm(X)Im(X) = Xm- 1. This shows that Q is 
injective. The set 

B{=(mm((m)J ? < j < ?>(m) -1} 

forms a basis for Trm((m)Z[(m] as a 2-module, and so Q-1(B) forms a basis for L 
as a 2-module. To determine #(L/(C n L)), consider the Z/pZ vector spaces L/pL 
and (C n L)/pL. The projection of Q-1 (B) to L/pL will form a basis for L/pL, and 
so L/pL is 0(m)-dimensional. 

If r E Z[X], then let p(r) denote the polynomial in Z/pZ[X] derived by reducing 
the coefficients of r mod p. The proof of Lemma 1.2 demonstrated that (X - ti) I 
p(> 7i1 tkXk) if j 0 -1 mod p and hence that P('rm(X)) I p(E3 1l tkXk). Let 

T(X) = h(X)Im(X), where 

m-1 

p(h(X)Prm(X)) = p(E tjxj), 
j=O 
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and write the coefficients of T(X) into a vector v E Em. From the construction of 
v, it is clear that v E L n C and that v 0 pL. From the definition of C, it follows 
that v spans (L n C)/pL and hence that 

#{L/(L n c)} = #{(L/pL)/((L n C)/pL)} = pq$(m)-l 

This proves the lemma. 

It is another consequence of the lemma that d(L) = 1det(M)J, where 

Mi= (Q -1 ((Mi- 
1 q,m (Wm) Q -1 ((Mj Fm l((M))) 

For a, -y E Z [(m], define (a, y)m = TrQ(m) /Q(a-y) E Q. The following lemma will 
be important in finding I det(M). 

Lemma 6.2. If u, v E L, then (u, v) = (Q(u), Q(v))m/m. 

Proof. It suffices to prove the lemma in the case u = v, since 

(u,v) = ((u+v,u+v) - (u-v,u-v))/4 

and 

(Q(u), Q(v))m = ((Q(u + v), Q(u + V))m - (Q(u - v), Q(u - V))m)/4. 

Let u = (bo, . . . , bm_1); it follows that E bk=kd - 0 for gcd(d, m) O 1 because 
u E L. The lemma now follows from Lemma 1.4. 

It is a consequence of Lemma 6.2 that v/1 det(M) = /1 det(D)/m(m)/2, where 

Djk = tRQ(lm)/Q(( m@m((m)(kmm((m)). The next lemma gives the latter determi- 
nant in terms of the discriminant of Im((m)2[(m]. 

Lemma 6.3. If D is as above, then I det(D) D= DQ(Cm)/(Q (m ((m)?Z[(m]) I, where 
DQ(m)/Q( ) denotes the discriminant. 

Proof. If Gal(Q[(m]/Q) = {1, ..., %$(m)}, then D = PP where Pjk = 

Uk((mj Im((m)) and P* is the conjugate transpose of P. The determinant is a poly- 
nomial in its entries, and so the following calculation proves the lemma: 

det(D)l = det(P)det(P*) 

= det(P)det(P) 

= (det(P))21 

=JIDQ((m)/(Q(1Fm((m)Z[(m] ) 1 

It is known from algebraic number theory (see [4], p. 66) that 

D(Q((m)/Q(12(m ((m)Z[(m] ) =(NQ(l2m)/Q ('m ((m) ))2 DQ((m)/,2(Z[(m]) . 

Differentiating the equation Xm -1 = 'Dm(X)Im(X) and substituting (m for X 
gives m(mm-1 = ((m)Im((m). Taking the norm of both sides gives 

m? (m) = DQ( )/Q (E [(m] )NQ((m)/Q (@m ((m)) 

Hence det(D) - m20(m)/ DQ(m)/Q(Z[(m])j and so 

d(L) = I det(M)j 

- det(D) / M(m)/2 

- m (m)/2 JDQ(m)/Q (Z[(m]) -1/2. 
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It is also known from algebraic number theory (see [1], p. 88) that 

JDQ(4m)/Q(Z[(m])j = m+(m)/ fJ q$(m)/(q-l). 

q prime 
qlm 

This gives d(L) = Hq prime q0(m)/(2q-2) Theorem 6 follows from Lemma 6.1 to- 
qlm 

gether with the above equality. 
The inequality M2 (m, p) < (Vm/)Ml (m, p) gives an upper bound for M2 (m, p). 

If p is sufficiently large compared to m, then this bound can be improved by con- 
sidering spheres. Let Sr = {x E Rm I /(x, x) < r}. In this case, vol(Sr n v) = 
rO(m)mO(m)/2/F(q$(m)/2 + 1), where F is the gamma function. If 

rq5( )m '(m)/2/](0(M) /2 + 1) > (20(m) 17 qq/(m)/(2q-2))p/(m)-1 
q prime 

qlm 

then there will be a non-zero point of C n L that is in Sr n V by Theorem 4 and 
Theorem 6. Solving for r gives 

2(I`(?(m)/2 + 1))1/0(m) H q prime ql/(2q-2)'\ 

r > 
N 

q|m pl-/)m 

If r can be chosen less than p, then M2 (m, p) < r. This can be done if 

20(m)FQb(m)/2 + 1) 1lq prime qO(m)/(2q-2) 
qlm < 

M?o(m) /2 P 

7. A THEOREM OF HECKE 

The material on the idele group presented here is taken from ([4], pp. 137- 
143, 292-293) and ([1], p. 68). Suppose that k is an algebraic number field with 
N = [k: Q], and denote the set of prime ideals in the ring of integers of k by P. 
Let Mk be the set of absolute values on k, where each absolute value generates a 
different topology on k and is normalized to induce a standard absolute value on Q. 
A standard absolute value v on (Q is of the form v(q) = lql or v(q) = p-op(q)) where 
p is prime and op(q) is the exponent of p that appears in the prime factorization of 
q. The set of archimedean absolute values is denoted by SO,O and the completion of 
k with respect to an absolute value v is denoted by k,. The archimedean absolute 
values v on k are all of the form v(x) = u(x) , where a is an embedding of k into 
(C. 

The multiplicative group k* is locally compact in the topology generated by the 
absolute value v on kv. If v is an absolute value arising from a prime ideal P, then 
the absolute value will be called P-adic. If v is a P-adic absolute value, then the 
group (9v consisting of all k E k* with v(k) = 1 forms a compact open subgroup of 
k*. This group will be frequently referred to as the P-adic units. 

If i E HIVCk k*, then let jv denote the vth component of j. The idele group Jk is 
the set of all j such that jv is a P-adic unit for all but finitely many P-adic absolute 
values v. The topology on Jk is that generated by sets of the form H VMk Uv, where 
Uv is open in k* and Uv = (9v for all but finitely many P-adic valuations v. The 
idele group Jk is a locally compact topological group with respect to this topology. 
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A number of properties of Jk will become useful later on. First of all, note 
that ai E k* is a P-adic unit for all but finitely many P-adic absolute values. 
This implies that k* can be embedded in Jk by taking ai to (ar, , ... , a ... ). The 
quotient Jk/k* is called the idele class group of k, and is a topological group with 
the quotient topology. 

Secondly, define lljll = HIIVMk v(jv). This product is well-defined, and deter- 
mines a continuous group homomorphism from Jk to the multiplicative group R+ 
of positive real numbers. The kernel of this map is a closed subgroup of Jk denoted 
by Jko. It follows as a consequence of the product formula that k* C Jko. The pro- 
jection of Jko to the idele class group gives a compact subgroup Jko/k* (see [4], p. 
142). 

The multiplicative group R+ can be embedded in Jk by taking a positive real 
number t to the idele j whose archimedean components are tl/N and whose P-adic 
components are 1. This embedding gives a decomposition of Jk as the internal direct 
product of Jk and R+ . Define JS? to be the subgroup of Jk consisting of all ideles 
whose archimedean components are 1 and whose P-adic components are P-adic 
units. Let ir be the projection from Jk to Jk/(R+k*JS-). The quotient topology 
induced on Jk/(R+k*JSo) as a quotient of Jk is the same as that induced on 
Jk/(R+k*JS-) as a quotient of the idele class group, and both ir and the projection 
72 from the idele class group are continuous with respect to this topology. It follows 
from previous remarks that 7r(Jk?) = 1r2(Jko/k*) = Jk/(R+k*JS-) is a compact 
topological group. 

If G is a compact topological group, then a character of G is a continuous group 
homomorphism from G to the unit circle in the complex plane. The definition of 
equidistribution is given in full generality in ([4], pp. 315-316), but it will only 
be stated here in the context of prime ideals of the ring of integers of k. Define 
T: P - Jk as follows. For each prime ideal P, select an element -yp E k* that 
generates the prime ideal in Ovp, and define T(P) to be the idele with -yp in the 
vpth component and 1 in all other components. Let Pr denote the set of prime 
ideals P such that Nk/Q(P) < r. If A is a map from Jk to a compact commutative 
group G, then P is A o T-equidistributed in G if 

(2) lim #(Pr) EX ooT JX 

for all characters X of G. The measure on G is the unique Haar measure I,u with 
p(G) = 1. The only property of Haar measure that will be used explicitly is that 
,u(gU) = p(U) for all Borel-measurable sets U and g E G. See [2] for an in-depth 
exposition of Haar measure. 

If P is A o r-equidistributed in G, then equation (2) holds if X is replaced by any 
integrable function on G, where an integrable function is as defined in ([4], p. 316). 
The next section will take for granted the fact that the characteristic function on 
an open set is integrable. 

The following theorem due to Hecke (see [4], p. 317) gives a criterion for P to be 
Aor-equidistributed in G. It follows from this theorem that P is lror-equidistributed 
in Jk/(R+k*JS-). 

Theorem 7. If G is a compact commutative group and A: Jk -- G is a continuous 
homomorphism such that A(Jko) = G and A(k*) = {1}, then P is Aor-equidistributed 
in G. 
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The next section will prove a theorem on the distribution of principal prime 
ideals in Z[(?] where m is a power of 2 or m = 6. 

8. THE DISTRIBUTION OF PRINCIPAL PRIME IDEALS IN CYCLOTOMIC FIELDS 

The following theorem will be critical in proving that the upper bound derived 
in Section 2 is optimal if m is a power of 2 or m = 6. 

Theorem 8. If m is a power of 2 or m = 6, then for all e > 0, there is Y = 

Z0 AmO)1-yn(m E Z[(m] such that: 

1. -y generates a prime ideal in Z[(m], 
2. NQ(m)/Q(Y) = p, where p is prime and p -1 mod m, and 

3. if 3 = p/Zy = ( bjbm3, then lbj/bol < e for 1 < j < ?(m)-1. 
There is also a -y satisfying the first two conditions together with the condition that 
bo > 0 and 1 - e < bj/bo < 1 + e for 1 < j < m/2 - 1. 

The first step in proving the theorem is to find an open set UE C Jk/(R+k*JS0) 
with the property that there is a -y satisfying conditions 1 and 3 in the theorem 
if 7r o r(P) is in UE. The equidistribution criterion together with some additional 
information on the distribution of primes will then show that there is a -y that sat- 
isfies all the conditions of the theorem. The proof for the alternate third condition 
is very similar. 

To find UE if m is a power of 2, let ao,... ., 9q(m)/2-1 be the embeddings of k into 
C defined by ui((m) = (m , where 1 = zo < < Zo(m)/2 l = m/2-1 are relatively 
prime to m. These embeddings induce all of the archimedean absolute values on 

k, and give a metric d on k0(m)/2 defined by d(c, c') = z0 ;m 2-1 uCj(Cj - c)12, 

where cj and Cj are the jth components of cj and cj, respectively. This metric 
extends to a metric d on CO(m)/2, and d generates the topology on Co(m)/2 as a 
subset of Jk. Consider C as being embedded in Co(m)/2 along the diagonal, and 
suppose that c = Zi1?>l qi(,m E k* with d(O,c) < r/2q(m), where q > 0 is 
chosen so that ri/(1 - 7r) < e and (1 - 7r)/(1 + q) > 1 - 6. The following lemma will 
put a bound on Iqi . 

Lemma 8.1. If c is as above, and m is a power of 2 with m > 4, then IqiI < 7 for 
O > i > ?>(m)-1. 

Proof. First of all, note that j + m/2 is relatively prime to m if j is relatively prime 
to m. This implies that TrQ(m)/Q((m) = 0, and hence that TrQ(m/(() = 0 if 
i * 0 mod m/2, since (m is a primitive m/ gcd(m, i)th root of unity. It then follows 
from a straightforward computation that TrQ(~m)/Q(cjcj-) = ?>(m) Z=?m) 1 q2. If 
a E Gal(Q((m)/Q), then a = aj or a = 7j for some j. The lemma now follows from 
the following calculation. 

?)(m)-1 

qil E q2 
j=O 

- 44?>(m)TrQ(m~)/Q (Cj j) 

- /2q(m)d2(O, 1/c) 

K 17. 
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Let U = {c d(c, 1) < /l V2(mA)} and let UE be the open set ir(U x H, (9v), 
where the product ranges over all P-adic absolute values. The process is the same 
for the alternate third condition, except that U = {c | d(c, z; kO)-1 (m) <i/v'}. 
If m = 6, then every c E C has a unique representation of the form r1 + r2(m with 
rl,r2 R, and so U = {c I Jri/r2J < e}, or U = {c Jr,-11 < q, Jr2-11 < } for 
the alternate third condition. 

If 7r o -r(P) E Ue, then it is possible to write r(P) = -yrjSu, where y E k*,r r 
R+,js E jSES, and u E U. An examination of the components shows that aY is a 
prime element in the P-adic completion and a P'-adic unit for all P' E P that are 
different from P. It follows that -y E Z[Im] and that -y generates P. Since U is an 
open set, it is possible to find q E Q sufficiently close to r so that 1/-y = qu' with 
u' E k*nU. Ifu' = E$(m)1 qjm, then lqo-1 <17 and lqjl <7 for 1 < j <? (m)-1 
by the previous lemma, so that Iqj /qo < e for 1 < j < 0b(m) - 1. This shows that 
there is a -y satisfying conditions 1 and 3 if 7roT(P) E UE. The proof of the equivalent 
statement for the alternate third condition is the same. Note that it is possible to 
assume without loss of generality that the qj's are positive in this case, since the 
previous lemma shows that they are close to 1. The same statements follow in a 
straightforward manner if m = 6. 

If X is the characteristic function on UE, meaning that X is 1 on UE and 0 outside 
of UE, then equation (2) becomes the following equation: 

lim #(. U,) U). 
r- +oo # (Pr) 

The following lemma will show that there are infinitely many primes P that are in 
UeE. 

Lemma 8.2. Suppose G is a compact topological group with the unique Haar mea- 
sure 1t such that /1(G) = 1. If U is a non-empty open subset of G, then /1(U) > 0. 

Proof. If G is a topological group, then UgeG 9U is an open cover of G, and so G 
can be written in the form G = Un>0 gjU for some finite set {go,... n } C G. It 
follows that p(G) = 1 < nrL(U) since ,u is Haar measure, and so ,u(U) > 1/n > 0. 

The next lemma will show that there must be infinitely many primes P such 
that P E UE and P satisfies the second condition. This will complete the proof of 
the theorem. 

Lemma 8.3. If 19P is the set of prime ideals with prime norm, then 

lim #(Pr n 'P) 

Proof. If NQ(4m)/Q(P) = p with p prime, then there are b(m) prime ideals lying 
abovep andp _ 1 mod m. In general, NQ(,m)/Q(P) = p0(P), and there are b(m)/o(p) 
ideals lying over p, where P n Z = pZ, and o(p) is the multiplicative order of 
p mod m. The above limit then becomes the following: 

lim 0(m) #fp I p prime,p < r,p _ 1 mod m} 
rl0oo Zjmz/mw* )) #{p P prime,p _ j mod m,p < rl/0(i)} 

Divide both the numerator and denominator of this fraction by 

#fp I p prime,p < r}. 
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By Dirichlet's theorem on the distribution of primes in arithmetic progressions (see 
[7], p. 31), the numerator and the 1 mod m component of the denominator tend 
to 1 as r -? oo, while the other components of the denominator tend to 0. To see 
this fact for the other components, divide the numerator and denominator of the 
component by #{p I p prime,p < PI U)}. By Dirichlet's theorem, the numerator 
tends to l/o(j), and the denominator tends to rl-l/o(j)/o(j) by the Prime Number 
Theorem. The lemma now follows. 

The next section will be devoted to the application of Theorem 8 to the problem 
of finding optimal possible bounds for M1 (m, p). 

9. WHAT ARE THE OPTIMAL BOUNDS FOR MI (M,p)? 

If m is a power of 2, then it was proven in Section 2 that Km < 1, where Km is 
as defined in Section 1. The following theorem shows that equality holds. 

Theorem 9. If m is a power of 2, then Km = 1. 

Suppose without loss of generality that 7Z[(m] = Pm-l, where -y is as in The- 
orem 8 and Pj is as defined in Section 2. It is clear that /3 = p/7 is an el- 
ement of Z[(m], and it follows from Theorem 8 that lbjlbol < e for 1 < j < 
b(m) - 1. The next lemma shows that there is a coset C of jUm in (Z/pZ)* with 

C {=+bO ... I ,bm/2-1} 

Lemma 9.1. If m is a power of 2, 3 E Ijm/2-2 P2j+1, and /3 f Pm-l, then bi 
bot0 modp for 1 < i < m/2 -1, and bo # 0 mod p. 

Proof. It is a consequence of the definition of Pj that Cm _ ti mod Pj, and hence 
that Em=/?2- biti= 0 mod p for all odd numbers j with j g -1 mod m. This 
means that the vector v = (bo mod p,... , bm/2-1 mod p) is in the nullspace of 
an (m/2 - 1) x m/2 Vandermonde matrix A with nullity(A) = 1. A geometric 
series computation shows that w = (1 mod p, t mod p,... , tm/2-1 mod p) is in the 
nullspace of A, and so v is a scalar multiple of w over Z/pZ. It follows that bl- 
bot' mod p for 1 < i < m/2 - 1, and bo # 0 mod p since 3 0 Pmi,. 

Suppose that C' is a coset of jUm in (Z/pZ)*. Let /3' = Zm7/2 1 b (m, where 
bl E C' and bj b'tJ for 1 < j < m/2 - 1. The same argument as in Lemma 1.2 

shows that /3' E Pj if j n m-1, and so /3' = cf3 for some c = EZm/21 Cj(mj E Z[(m]. 
Suppose that ICk = maxo<j<m/2-1 lcj . The calculation below gives a lower bound 
for IC'l in terms of IboI: 

IC'l > lb' 
k m/2-1 

= bjck-j 
- S 

bjCm/2+k-ji 
j=O j=k+l 

k m/2-1 

> lbockl-IZIbjck-jl- 5 |bjCm/2+k-jj 
j=1 j=k+l 

> lboCkI(1 - (m/2 - 1)6) 

> IboI(1 - (m/2- 1)6). 
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It also follows that Ib > (b+(mo2 l)E)pl-2/m, since 

gNQ( )/Q(I3) l-= pm/2-1 

m/2-1 m/2-1 

LI I S bl(2j+') 

j=0 1=0 

m/2-1 m/2-1 

fl E jb 
j=0 1=0 

? (lbol(1 + (m/2 - 1)E))m/2. 

Combining the inequalities for IC'l and lbol gives 

Ml (m,lp) > (1 (m/2 ) pl2/m 

Letting e -- 0 proves Theorem 9. 
Let Km be the supremum of all ii such that M1(m,p) > p,l-l/n(m) for all 

primes p. Section 2 gives a lower bound for Km, and the following theorem applies 
Theorem 8 to give an upper bound in the case where m is a power of 2. This 
theorem proves that the upper bound M1(4,p) > (V'/2)pl/2 proven in Section 2 
is optimal. 

Theorem 10. If m is a power of 2, then Km < 21-2/rn 

Proof. Let f satisfy the alternate third condition in Theorem 8. Write 3 = 

bo((Em/Z21 j + m7/2-1 dj(m), where Idjl < e for 0 < j < m/2 - 1, and note 

that zi=/-1 ( = 2(1 - (m) with NQ(4m)/Q(2/(I - (m)) = 2m/2-1. An upper 
bound will be placed on lbol by using the fact that pm/2-1 - NQ(m /Q3j. The 
right-hand 'side of this equality expands as 

m/2-1 m/2-1 

om/21 JJ 2/(1- (m2+1) + E Cj(j,2i+1)j 

i=O j=O 

One term in the product is NQ(m/Q(2/(1m-(i)), and each of the other 2m/2 - 1 
terms has absolute value that is bounded above by 

f (m)e = (1/(1 - cos(21r/m)))m/2-IMin 

The cosine term comes from the absolute value of 1 - (m and the me term is an 
upper bound for _m/2-1 cjQ , Putting these bounds together gives the inequality 

pm/2-1 > Ibo Im/2 12m/21 - (2m/2 - 

or 

lbol( (12m/2-1 - (2m/2 - 1)f(m)612/m P 
Lemma 9.1 shows that there is a coset C with C = { bo,.*. , +bm/2-1}, and so 

Ml(m,ip) < ICI < (1 + 6) bo0. Letting 6 -e 0 proves the theorem. 

If m = 2e3f with e, f > 0, then the upper bound 
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proven in Section 2 is the same as the bound proven by Robinson. This suggests 
that perhaps this bound is optimal. In general, this seems difficult to prove, in part 
because it seems difficult to extend Theorem 8 to this case. Theorem 8 does apply, 
however, when m = 6, and plays a crucial role in the following result, which shows 
that the upper bound from Section 2 is optimal. 

Theorem 11. If Km and Km are as previously defined, then K6 = 2/V3 and 
K;6 < 1- 

Proof. Pick 3 and -y that satisfy the alternate third condition in Theorem 8, and 
suppose without loss of generality that ty7Z[(m] = Pm-1) so that /3Z[(m] = P1. It 
follows that bo + b1t 0 mod p, and hence that b1 -bot2 mod p. This means that 
bo + b -bo(1 + t2) bo0t mod p, which gives a coset C {?bo, ?(bo + b1), bi} 
Note that 

NQ((m)/Q(I3) = p = bo + bobl + b2 < b(2 (1 + e) (1 + ()2) 

which implies that bo + b1 > (2-e) (1+(l+J+(l+e)2 ) 
Suppose that C' is another coset with C' = {?b', ?(bo + bl), ?bl}, where b_ 

bot2 mod p. It follows that bo + b'(m E P1, and so 

bl + bl m = (co + cljm)(bo + bim) 

for some co, c1 E Z. If c1 = 0, then Ib' + b1j = cojjbo + bij > lbo + bi1. Suppose now 
without loss of generality that c1 > 0. If co = 0, then Ib= cl bo +b1 If co > 0, then 
b= (co+cl)bi+clbo > bo+bl,andco < Oimpliesthat boj = bcob--c1bi > bo+bi. 

It now follows that 

IC'l > ICI > (2-6) (1+(1+<)+(1+6)2) 

which proves the first part of the theorem. 

To prove the second part of the theorem, let y, /3, and C be as before, except that 
3 satisfies the regular third condition of Theorem 8. Under these circumstances, it 

follows that ICI < (1 + e)tbol and that 

p=b?+bob, +?b2 < b2(?+c+c2). 

Solving for bo gives ICI < + /, which proves the second part of the theorem. 
In general, the bounds from Section 2 can be improved by finding the volume of 

S112 n V exactly instead of using the Vaaler estimate. It is doubtful, however, that 
this improvement will lead to an optimal bound. 
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